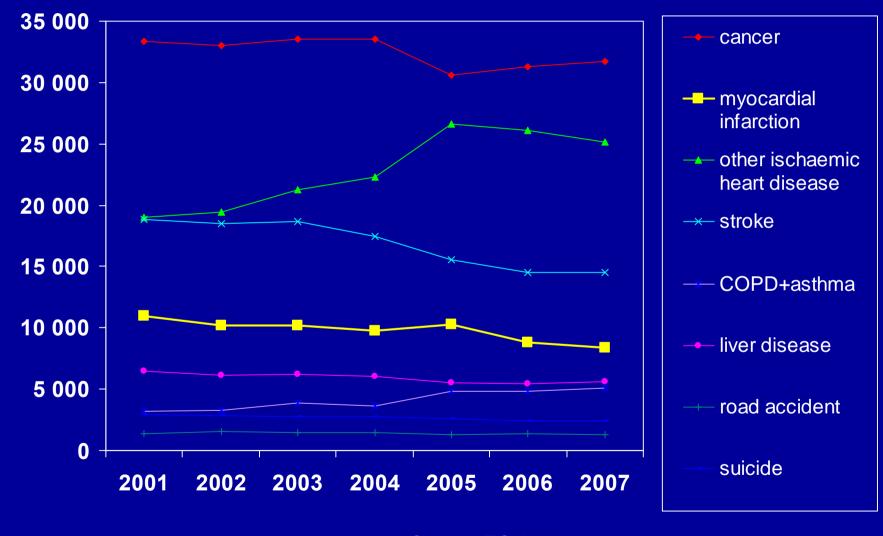

GP Research in Hungary. The State of the Art

László Kalabay MD PhD Department of Family Medicine Semmelweis University

67th European General Practice Research Network Congress Budapest October 16-19, 2008

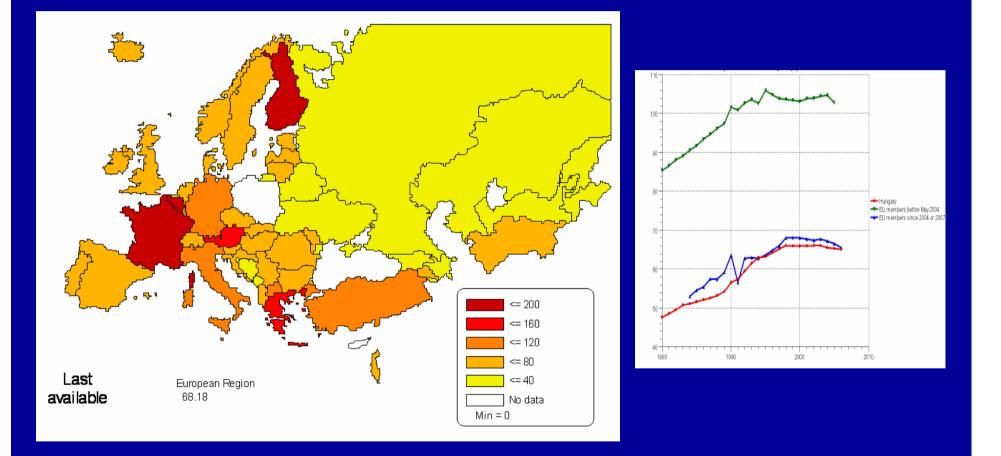


Life expectancy at birth in Europe, years

Source: HFA-DB/Europe, July 2008


Main causes of death in Hungary 2001-2007

Source ESKI, Hungary, 2008

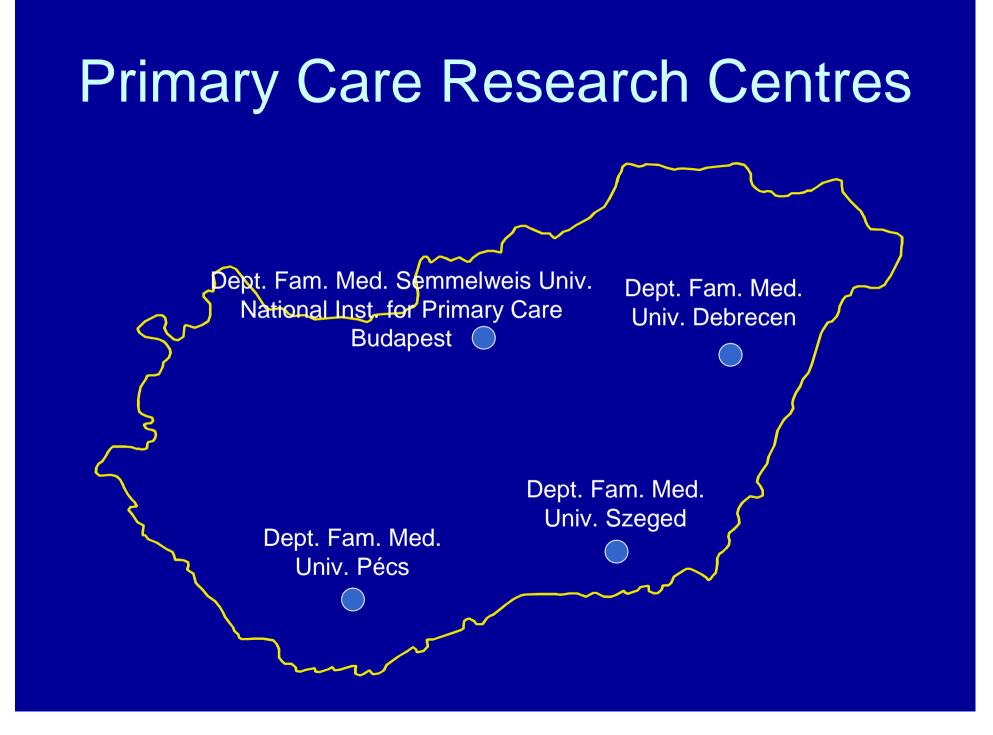

Standardised death rates in Europe and Hungary (per 100,000)

ischaemic heart disease cerebrobascular diseases

Source: HFA-DB/Europe, July 2008

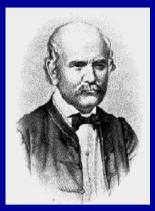
General practitioners in Europe per 100,000

Source: HFA-DB July 2008

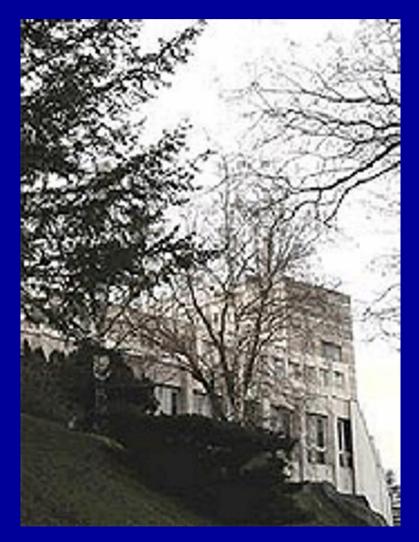

Family practices in Hungary

- No. of practices: 6834 (1500 persons per practice)
 - -Adult : 3304
 - -Paediatric: 1533
 - -Mixed: 1550
- 95% of practices are privatised
- Financing: on average 2600-3500 € per month

(Source: Central Bureau of Statistics)


Scientific Organisations in Primary Care

- Scientific Society of Hungarian General Practitioners (MÁOTE) est. 1967
- Research Organisation of Hungarian Family Physicians (CSAKOSZ) est. 2001
- College of Hungarian Teaching Family Physicians (MOCSAK) est. 1998
- International relationships: WONCA, EURACT, European Forum for Primary Care, IAAMRH, EURIPA


The Semmelweis University Budapest

Ignác Fülöp Semmelweis 1818-1865

Department of Family Medicine Research Activity

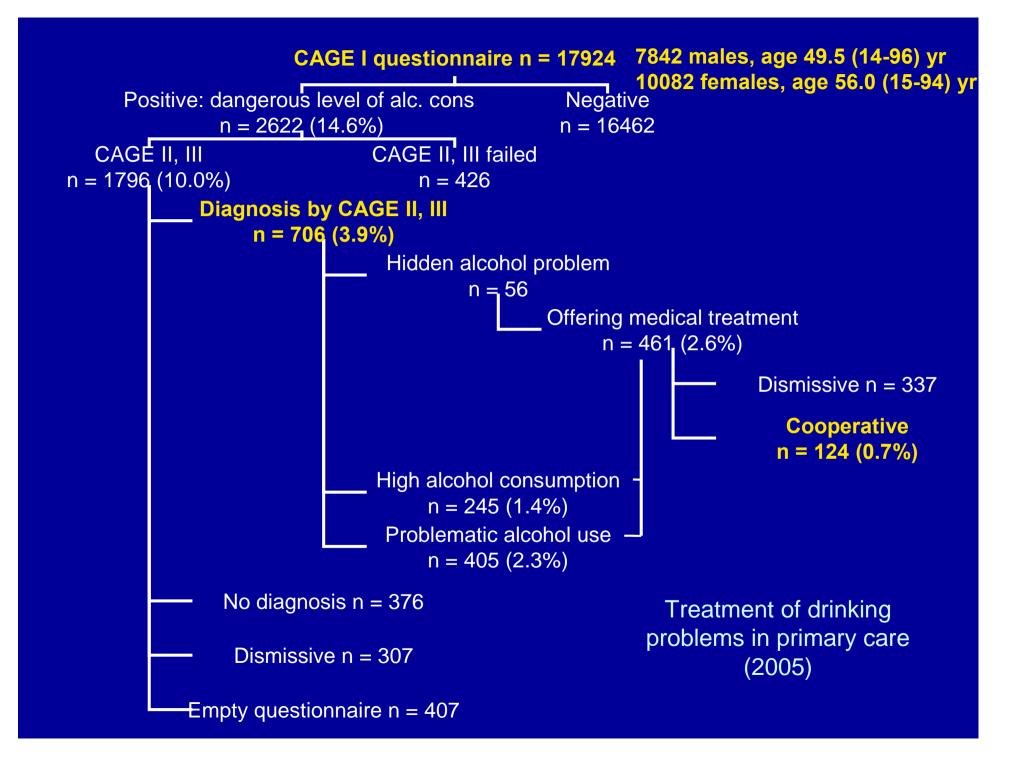
Founded in 1992

- Cardiovascular Research Group
 - Effective treatment of hypertension
 - Serum uric acid as a CV risk factor
 - Management of stroke patients
- Depression
- Sleep apnoea syndrome (OSAS)
- Immunology hepatology
- Alternative medicine
 2004-2008: Number of publications: 41, cumulative impact factor: 26.337

Department of Family Medicine, University of Debrecen Research Activity

- Cardiovascular research
- Cardiovascular risk, Metabolic syndrome
- Paediatric primary care, prevention and research
- Infant feeding, Allergy, Smoking in childhood
- Childhood obesity research
- Metabolic disorders, Glucoregulation disorders, Treatment of childhood obesity

Department of Family Medicine, University of Pécs Research activity


- Chronic stress in cancer patients
- Childhood obesity
- Screening of cardiovascular risk factors
- Compliance of patients with hypertension
- Smoking cessation
- Side-effect of medication

Research Activity - The State of Art

- Most studies are epidemiologic
- Mostly descriptive studies
- Much less experimental or interventional studies
- Few presentations and publications at international forums

Care of stroke patients in Hungarian family practices

	2001	2004	Difference
No. of practices	750	300	
No. of patients	7346	2305	
Combined antihypertensive therapy	2.08%	2.46%	p = 0.299
Platelet aggregation inhibitors	73.1%	78.1%	p <0.0001 OR: 0.762 (95% C.I: 0.682-0.852)
Lipid-lowering therapy	23.0%	72.4%	p <0.0001 OR: 0.114 (95% C.I: 0.102-0.127)
Able to work	7.4%	8.0%	p = 0.7576
Hospital readmission rate	6.1%	3.7%	p <0.0001 OR: 1.761 (95% C.I: 1.385-2.239)

Hungarian Uric Acid Study (HURAC) 2007

Aims:

- To determine the prevalence of high blood uric acid level in Hungarian population
- To assess the association of hyperuricaemia with cardiovascular diseases

Patients:

 11254 patients over 40 years from 360 practices

Prevalence of hyperuricaemia

Men	Women
n = 4129	n = 5871
1315 (31.8%)	1243 (21.2%)
Serum uric acid ≥ 390 umol/l	Serum uric acid ≥ 360 umol/l

Association of hyperuricaemia with cardiovascular diseases

		Men (n = 412	9)	Women (n = 5871)			
	OR	95% C.I.	р	OR	95% C.I.	р	
Hypertension	1.678	1.434-1.963	< 0.0001	3.772	3.120-4.560	< 0.0001	
Diabetes	1.044	0.909-1.200	0.542	2.045	1.792-2.334	< 0.0001	
Dyslipaemia	1.364	1.193-1.558	< 0.0001	1.688	1.484-1.920	< 0.0001	
Ischaemic heart disease	1.377	1.186-1.600	< 0.0001	2.080	1.817-2.381	<0.0001	
Atrial fibrillation	1,462	1.125-1.899	0.004	2.444	1.934-3.089	<0.0001	
Heart failure	1.676	1.349-2.083	< 0.0001	3.169	2.619-3.835	< 0.0001	
Peripheral vascular disease	0.971	0.798-1.180	0.764	1.773	1.457-2.158	<0.0001	

Logistic regression: Hypertension, male

					_				
								95,0% C.I.f	or EXP(B)
		В	S.E.	Wald	df	Sig.	Exp(B)	Lower	Upper
Step	AGE	,063	,007	78,619	1	,000	1,065	1,051	1,081
1	BMI	,066	,023	8,202	1	,004	1,068	1,021	1,118
	RR_SYST	,052	,007	50,353	1	,000	1,053	1,038	1,068
	RR_DIAST	,026	,011	5,929	1	,015	1,027	1,005	1,048
	PULSE	-,004	,010	,153	1	,695	,996	,978	1,015
	ABD_CIRC	,016	,008	4,279	1	,039	1,016	1,001	1,031
	URICACID	,002	,001	6,898	1	,009	1,002	1,001	1,004
	ALCOHOL	,042	,064	,430	1	,512	1,043	,920	1,182
	CHOLESTE	-,062	,151	,168	1	,682	,940	,698	1,265
	TRIGLYC	,038	,057	,439	1	,507	1,039	,928	1,163
	HDL_CHOL	,127	,250	,258	1	,611	1,135	,696	1,852
	LDL_CHOL	-,016	,156	,011	1	,918	,984	,726	1,335
	SGOT	-,011	,006	3,096	1	,078	,989	,978	1,001
	SGPT	,007	,004	2,896	1	,089	1,007	,999	1,016
	GGT	,001	,001	2,112	1	,146	1,001	1,000	1,002
	CN	,026	,042	,375	1	,540	1,026	,944	1,115
	KREATINI	-,003	,002	1,803	1	,179	,997	,993	1,001
	Constant	-15,281	1,252	149,002	1	,000	,000		

Variables in the Equation

Logistic regression: Hypertension, female

								95,0% C.I.f	or EXP(B)
		В	S.E.	Wald	df	Sig.	Exp(B)	Lower	Upper
Step	AGE	,060	,006	98,244	1	,000	1,062	1,050	1,075
1	BMI	,038	,019	3,779	1	,052	1,039	1,000	1,079
	RR_SYST	,058	,007	79,876	1	,000	1,060	1,046	1,073
	RR_DIAST	,018	,010	3,407	1	,065	1,018	,999	1,038
	PULSE	,017	,009	3,365	1	,067	1,017	,999	1,035
	ABD_CIRC	,023	,007	10,998	1	,001	1,023	1,009	1,037
	URICACID	,004	,001	16,809	1	,000	1,004	1,002	1,005
	ALCOHOL	,019	,083	,054	1	,817	1,019	,866	1,200
	CHOLESTE	,218	,159	1,890	1	,169	1,244	,911	1,697
	TRIGLYC	,011	,083	,016	1	,898	1,011	,860	1,188
	HDL_CHOL	-,247	,213	1,335	1	,248	,781	,514	1,187
	LDL_CHOL	-,312	,164	3,632	1	,057	,732	,531	1,009
	SGOT	,006	,009	,432	1	,511	1,006	,989	1,023
	SGPT	,002	,006	,070	1	,792	1,002	,990	1,014
	GGT	-,001	,001	,664	1	,415	,999	,997	1,001
	CN	,127	,042	9,234	1	,002	1,136	1,046	1,233
	KREATINI	-,006	,004	1,949	1	,163	,994	,987	1,002
	Constant	-17,187	1,157	220,605	1	,000	,000		

Variables in the Equation

Logistic regression: Peripheral artery disease, male

								95,0% C.I.f	for EXP(B)
		В	S.E.	Wald	df	Sig.	Exp(B)	Lower	Upper
Step	AGE	,041	,008	24,448	1	,000	1,042	1,025	1,060
1	BMI	,061	,026	5,728	1	,017	1,063	1,011	1,118
	RR_SYST	-,013	,008	2,624	1	,105	,987	,973	1,003
	RR_DIAST	-,012	,012	,978	1	,323	,988	,964	1,012
	PULSE	,056	,011	24,870	1	,000	1,058	1,035	1,081
	ABD_CIRC	-,013	,009	1,880	1	,170	,988	,970	1,005
	URICACID	-,002	,001	5,130	1	,024	,998	,996	1,000
	ALCOHOL	,305	,081	14,261	1	,000	1,356	1,158	1,589
	CHOLESTE	-,224	,175	1,628	1	,202	,799	,567	1,127
	TRIGLYC	,064	,062	1,079	1	,299	1,066	,945	1,204
	HDL_CHOL	-,332	,321	1,066	1	,302	,718	,382	1,347
	LDL_CHOL	,249	,183	1,862	1	,172	1,283	,897	1,836
	SGOT	-,009	,008	1,202	1	,273	,991	,975	1,007
	SGPT	,001	,006	,052	1	,820	1,001	,989	1,013
	GGT	,001	,001	4,481	1	,034	1,001	1,000	1,003
	CN	,100	,045	5,007	1	,025	1,105	1,013	1,207
	KREATINI	,000	,002	,053	1	,818	1,000	,995	1,004
	Constant	-6,471	1,345	23,146	1	,000	,002		

Variables in the Equation

Logistic regression: Female, ischaemic heart disease

								95,0% C.I.1	for EXP(B)
		В	S.E.	Wald	df	Sig.	Exp(B)	Lower	Upper
Step	AGE	,077	,008	103,824	1	,000	1,080	1,064	1,096
1	BMI	,060	,022	7,389	1	,007	1,061	1,017	1,108
	RR_SYST	-,014	,007	4,325	1	,038	,986	,973	,999
	RR_DIAST	,019	,011	2,952	1	,086	1,019	,997	1,041
	PULSE	,029	,011	6,998	1	,008	1,029	1,007	1,051
	ABD_CIRC	-,003	,008	,138	1	,710	,997	,983	1,012
	URICACID	,002	,001	3,854	1	,050	1,002	1,000	1,004
	ALCOHOL	-,148	,122	1,471	1	,225	,862	,678	1,096
	CHOLESTE	,064	,199	,102	1	,749	1,066	,721	1,574
	TRIGLYC	,082	,078	1,098	1	,295	1,085	,931	1,264
	HDL_CHOL	-,084	,277	,092	1	,761	,919	,534	1,582
	LDL_CHOL	-,316	,206	2,362	1	,124	,729	,487	1,091
	SGOT	,012	,010	1,352	1	,245	1,012	,992	1,032
	SGPT	-,005	,007	,489	1	,484	,995	,983	1,008
	GGT	,000	,001	,143	1	,705	1,000	,998	1,001
	CN	-,025	,041	,377	1	,539	,975	,899	1,057
	KREATINI	,001	,004	,091	1	,763	1,001	,993	1,009
	Constant	-9,164	1,265	52,484	1	,000	,000		

Variables in the Equation

Dept. Fam. Med. Debrecen:

Measurement of cardiovascular risk and risk factors in untreated adults

	Female	Male	All	p	18-34	35-60	р	
					years	years		
Smoking habits (n = 1319))							
Continued smoking	24.5%	38.0%	30.3%		32.5%	29.2%		
Never smoked	67.7%	45,4%	58,2%	<0.0001	62.4%	56.4%	<0.001	
Quit smoking	7.8%	16.6%	11.5%		5.1%	14.4%		
Systolic blood pressure (n	=1313)							
< 140 Hgmm	72.6%	65%	69.4%		89.9%	60.2%		
140-159 Hgmm	21.4%	28.2%	24.3%	<0.05	8.6%	31.3%	<0.01	
160-179 Hgmm	4.4%	5.2%	4.7%		1.2%	6.3%		
≥ 180 Hgmm	1.6%	1.6%	1.6%		0.3%	2.2%		
Serum cholesterol level (n	= 1310)							
\leq 5,2 mmol/l	52.4%	44.8%	49.2%	<0.01	69.5%	40%	<0.001	
> 5,2 mmol/l	47.6%	55.2%	50.8%		30.5%	60%		
Blood glucose level (n = 1285)								
≤ 6,0 mmol/l	89.7%	87.3%	88.6%	NS	97.7%	84.5%	<0.01	
≥ 6,1 mmo/l	10.3%	12.8%	11.4%		2.3%	15.5%		

cont'd

	Female	Male	All	р	18-34 years	35-60 years	р		
Estimated cardiovascular risk (n = 1286)									
Low (<5%)	42.8%	23.1%	34.4%		83.5%	12.2%			
Moderate (5-10 %)	26.7%	20.6%	24.1%		13.0%	29.1%			
Medium (10-20 %)	25.6%	33.7%	29.1%	<0.001	2.7%	41.0%	<0.01		
High (20-40 %)	4.5%	21.7%	11.8%		0.5%	16.9%			
Very high (>40 %)	0.4%	0.9%	0.6%		0.3%	0.8%			

Jancsó Z., Márton H., Simay A., Újhelyi I., Ilyés I.: Orv. Hetil. 144., 1433-1439., 2003.

Health promotion day in 10 townships

Risk factors	Prevalence
Age 40-70 years	70.6 %
Female / Male	2/3 – 1/3
Smoking	22.6 %
Obesity, BMI >25 kg/m ²	73.6 %
Abdominal adiposity: waist circumference (fem	64.1 %
>88 cm, male >102 cm)	
Blood pressure systolic > 140 Hgmm	67.5 %
diastolic > 90 Hgmm	31.5 %
Serum cholesterol level >5.1 mmol/l	46.6 %
Blood glucose level >6.0 mmol/l	22.6 %
High CV risk based on SCORE pop.< 2000	63%
pop. > 10000	47%

Department of Family Medicine, Pécs University Hospice care of terminally ill patients, Attitudes of American and Hungarian GP-s Aim:

 To come to know and compare the attitudes of GPs in the USA and Hungary towards hospice care of terminally ill patients

Methods:

• Questionnaires with 29 questions were posted to 300 US and 339 Hungarian GPs.

Results and Conclusions:

- American GPs know hospice care better we do
- American GPs are able to discuss the prognosis with the patient more truthfully
- Hungarian GPs are more likely to pursue curative treatment until the patient dies

Major issues and drawbacks of conducting research in primary care

- Lack of independent financing
- Dependence on financial support from pharmaceutical companies
- Ageing and increasing retiring of GPs, along with insufficient supplementation with freshly graduated doctors who would potentially be committed in research
- Heavy workload in the single office structure
- Mean age of GP-s: 57 years, >10% are pensioners
- Practices without GP: 130-160
- Rigorous application of scientometric indices in allocating financial support for research

Thank you for your kind attention!